Roll No.:....

337514(37)

APR-MAY

B. E. (Fifth Semester) Examination, 2020

(Old Scheme)

(Mech. Engg. Branch)

FLUID MACHINERY

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two part out of (b), (c) and (d). Part(a) carries 2 marks each & parts (b), (c) & (d) carry 7 marks each.

Unit-I

1. (a) What do you mean by Boundary Layer?

(b) Prove the momentum thickness and energy thickness for boundary layer flows are given by

 $\theta = \int_0^0 \frac{u}{U} \left(1 - \frac{u}{U} \right) dy$ and

 $\partial^{\alpha} = \int_0^0 \frac{u}{U} \left(1 - \frac{u^2}{U^2} \right) dy$

- (c) Obtain Von Karman Momentum Integral equation. 7
- (d) A flat plate 1.5 m × 1.5 m moves at 50 km/hr in stationery air density 1.15 kg/m³. If the coefficients of drag and lift are 0.15 and 0.75 respectively, determine:

(i) The lift force.

- (ii) The drag force,
- (iii) The resultant force, and
- (iv) The power required to keep the plate in motion.

Unit-II

2. (a) What is impulse momentum principle?

2

7

- (b) Find the expression for efficiency of a series of curved vanes at one of its tips. Prove the Maximum efficiency is when u = V and the value of maximum efficiency is 50%.
- (c) A pelton wheel is having a mean bucket diameter of 1 m and is running at 1000 r.p.m. The net head on the pelton wheel is 700 m. If the side clearance angle is 15° and discharge through nozzle is 0·1 m³/s, find:

(i) Power available at the nozzle, and

- (ii) Hydraulic efficiency of the turbine.
- (d) A pelton wheel is to designed for a head of 60 m when running at 200 r.p.m. The pelton wheel develops 95.6475 kW shaft power. The velocity of the buckets is 0.45 times the velocity of the jet, overall efficiency is 85% and the coefficient of velocity is equal to 0.98.

Unit-III

3. (a) What are the functions of the draft tube?

2

- (b) In an inward flow reaction turbine the head on the turbine is 32 m. The external and internal diameters are 1.44 m and 0.72 m respectively. The velocity of flow through the runner is constant and equal to 3 m/s. The guide blade angle is 10° and the runner vanes are rigid at inlet. If the discharge at outlet is radial, determine:
 - (i) The speed of the turbine.
 - (ii) The vane angle at outlet of the runner, and
 - (iii) Hydraulic efficiency.
- (c) An inward flow turbine runner has an outer diameter of 0.6 m and an inner diameter of 0.3 m and runs at 750 r.p.m. The radial velocity of flow at inlet and exit is 6 m/s. Water enters the runner making an angle of 12° to the direction of motion of the blades at inlet. It leaves the runner radially. The mass flow rate is 1 kg/s. Calculate:
 - (i) Power developed.
 - (ii) Angle between the relative velocity of water and tangential velocity of the runner at exit.

7

(d) What is Cavitation effect? How can it be avoided in reaction turbines?

Unit-IV

- 4. (a) Define priming of centrifugal pump
 - (b) The impeller of a centrifugal pump has an external diameter of 450 mm and internal diameter of 200 mm and it runs at 1440 r.p.m. Assuming a constant radial flow through the impeller at 2.5 m/s and that the vanes at exit are set back at an angle 25°, determine: 7
 - i) Inlet vane angle,
 - (ii) The angle, absolute velocity of water at exit makes with the tangent, and
 - (iii) The work done per N of water.
 - (c) Show that the rise of pressure in the impeller of a centrifugal pump when frictional and other losses in the impeller are neglected, is given by

$$\frac{1}{2g} \left[v_{f1}^2 + u_2^2 - v_{f2}^2 \csc^2 \phi \right]$$

	Where, v_{f1} , v_{f2} = Velocities of flow at inlet and outlet	
	u_2 = Tangential velocity of the impeller at outlet, and	
	ϕ = Vane angle at outlet.	7
	(d) Why are centrifugal pumps used sometimes in series	
	and sometimes in parallel? Draw the following	
	characteristics curves for a centrifugal pump:	
	Head, power and efficiency versus discharge with	
	constant speed.	7
	Unit-V	
5.	(a) What do you mean by air vessel?	2
	(b) A single-acting reciprocating pump operating at 120	
	r.p.m. has a piston diameter of 200 mm and stroke	
	of 300 mm. The suction and delivery heads are 4 m	
	and 20 m, respectively. If the efficiency of both	
	suction and delivery strokes is 75 percent, determine	
	the power required by the pump.	7
	(c) The diameter and stroke length of a single-acting	
	reciprocating pump are 75 mm and 150 mm	
	respectively. It takes it supply of water from a sump	

337514(37)

3 m below the pump through a pipe 5 m long and		
40 mm in diameter. It delivers water to a tank 12 m		
above the pump through a pipe 30 mm in diameter		
and 15 mm long. If separation occurs 75 kN/m^2		
below the atmospheric pressure, find the maximum		
speed at which pump may be operated without		
separation. Assume that the piston has a simple		
harmonic motion.		

7

- (d) Describe with sketches the working of any two of the following hydraulic devices:
 - (i) Hydraulic crane
 - (ii) Hydraulic lift
 - (iii) Hydraulic press
 - (iv) Hydraulic coupling